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Abstract. We consider the approximation by a spectral method of the solution of the Cauchy
problem for a scalar conservation law in one dimension posed in the whole real line. We analyze a
spectral viscosity method in which the orthogonal basis considered is the one of Hermite functions.
We prove the convergence of the approximate solution to the unique entropy solution of the problem
by using compensated compactness arguments.
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1. Introduction. We consider the Cauchy problem for a genuinely nonlinear
scalar conservation law in one space dimension posed in the whole real line:⎧⎨⎩

∂u

∂t
+

∂f(u)

∂x
= 0, x ∈ R, t > 0,

u(x, 0) = ϕ(x), x ∈ R,
(1.1)

where f ∈ C1 is a smooth nonlinear function and ϕ ∈ L∞(R). It is well known that,
in general, there are no classical solutions to this problem. Moreover, weak solutions
are not unique. To isolate the physically relevant solution, one has to impose the
entropy condition

∂U(u)

∂t
+

∂F (u)

∂x
≤ 0(1.2)

in the sense of distributions, for all entropy pairs (U,F ), with U ∈ C2 convex and
F ′(u) = U ′(u)f ′(u); see [7], [11].

Our aim is to approximate the unique entropy solution of (1.1), that is, the
only weak solution verifying (1.2), by means of a spectral viscosity method based on
Hermite functions.

The idea of a spectral method [8] is to approximate the solution of a PDE by

a truncated series of the form
∑N

k=0 ũk(t)φk(x), where {φk} is an orthogonal basis
of some Hilbert space. When applied to a hyperbolic conservation law, the spectral
method must be supplied with an appropriate amount of artificial viscosity to avoid
the possible instabilities that can appear due to the nonsmoothness of the exact
solution. The so-called spectral viscosity method was first introduced in [21] and then
developed in [15], [14], and [12] among others.

On the other hand, numerical methods such as finite differences, finite elements,
or Fourier spectral methods always assume a finite domain of computation. When
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HERMITE SPECTRAL VISCOSITY METHOD 1061

dealing with a problem posed in an unbounded domain, the usual techniques to avoid
this difficulty are the following:

(i) choose a large bounded computational domain and impose artificial bound-
ary conditions;

(ii) assume the solution is periodic;
(iii) make a change of variables transforming the original domain into a bounded

one.
Our approach respects the unboundedness of the domain considering as orthogo-

nal basis for the spectral method the one consisting of Hermite functions.
The use of Hermite functions for the approximation of solutions of partial differ-

ential equations posed in the whole real line was proposed by Funaro and Kavian [6]
and developed in [16], [13] for the case of viscous scalar conservation laws, in [5] for
the Fokker–Planck equation, and in [9] for the Dirac equation.

One of the advantages of spectral methods is that they enjoy spectral accuracy;
this is, if the function to be approximated is very regular, the approximation con-
verges faster than any negative power of N . They are, therefore, very appropriate
in the case of elliptic and parabolic equations thanks to the regularization properties
of these operators. However, solutions of hyperbolic nonlinear problems may develop
discontinuities in finite time, as mentioned before, leading to at most first order accu-
rate spectral approximations. In [18], a postprocessing technique has been developed
to enhance the convergence rate of the approximations, at least in points not too close
to the shock.

The paper is organized as follows. In section 2 we describe the elements involved
in the definition of our spectral method and recall the basic properties that will be
needed in what follows. In section 3 we describe the method. Section 4 is devoted to
finding a priori estimates for the approximate solutions that will be used in section 5
to prove the convergence of the method by compensated compactness arguments,
supplemented by an L∞ uniform boundedness assumption on the numerical solution.
Finally, in section 6, we present some numerical experiments

2. Preliminaries. In this section we will describe the elements that take part
in our spectral method as well as the basic properties that will be used in the proof
of convergence.

As we have mentioned, we will consider the Hermite functions as an orthogonal
basis. These functions are defined as

hk(x) = e−x2

Hk(x), k = 0, 1, 2 . . . ,

where Hk is the Hermite polynomial of degree k and leading coefficient 2k, the solution
of the second order differential equation

y′′ − 2xy′ + 2ky = 0.(2.1)

From the properties of Hermite polynomials [20], it follows that

h′
k(x) = −hk+1(x), k = 0, 1, 2 . . . .(2.2)

Hermite functions satisfy an orthogonality relation with respect to the weight
function w(x) = ex

2

:∫ ∞

−∞
hn(x)hm(x)w(x)dx = δm,n2nn!

√
π ∀n,m = 0, 1, 2, . . . .(2.3)
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1062 JULIÁN AGUIRRE AND JUDITH RIVAS

Hence, they form an orthogonal basis of the weighted L2 space

L2
w =

{
ϕ: R → R measurable

∣∣∣∣ ∫ ∞

−∞

∣∣∣∣ϕ(x)|2 w(x)dx < ∞
}
.

We shall denote the norm in this space by

‖ϕ‖0,w =

(∫ ∞

−∞
|ϕ(x)|2 w(x)dx

)1/2

.

The weighted Sobolev spaces associated to L2
w are

Hk
w =

{
ϕ: R → R | ϕ,ϕ′, . . . , ϕ(k) ∈ L2

w

}
, k = 0, 1, 2, . . . .

In [6] one can find a characterization of the functions of H1
w that we recover in the

following proposition, as well as some inequalities regarding the norms of functions in
this space.

Proposition 1. Let ϕ ∈ L2
w. ϕ ∈ H1

w if and only if w1/2ϕ ∈ H1(R) and
xϕ ∈ L2

w. Besides,

‖(w1/2ϕ)′‖L2 ≤ ‖ϕ′‖0,w ,(2.4)

‖ϕ‖0,w ≤ ‖ϕ′‖0,w ,(2.5)

‖xϕ‖0,w ≤ ‖ϕ′‖0,w .(2.6)

Inequality (2.5), analogous to Poincare’s one in bounded domains, implies that

‖ϕ(k)‖0,w is equivalent to the usual norm
∑k

j=0 ‖ϕ(j)‖0,w on Hk
w. Therefore, we define

the norm in Hk
w as

‖ϕ‖k,w = ‖ϕ(k)‖0,w.

For noninteger s > 0, Hs
w is defined by interpolation, and, for s < 0, Hs

w is the dual
of H−s

w .
Since Hermite functions form an orthogonal basis of L2

w, any ϕ ∈ L2
w can be

expressed in a unique way as a Fourier–Hermite series of the form

ϕ(x) =
∞∑
k=0

ϕ̂khk(x), where ϕ̂k =
1√

π 2k k!

∫ ∞

−∞
ϕ(x)hk(x)w(x)dx.

If we denote by VN the subspace of L2
w generated by the first N+1 Hermite functions,

h0, h1, . . . , hN , given ϕ ∈ L2
w, its best approximation in the L2

w norm by functions of
VN is the orthogonal or spectral projection, that is,

πNϕ(x) =

N∑
k=0

ϕ̂khk(x).

From the definition of the operator πN , one has

‖πNϕ‖0,w ≤ ‖ϕ‖0,w ∀ϕ ∈ L2
w.

Besides, the following estimate for the weighted Sobolev norms of the error of the
approximation of ϕ by πNϕ is given in [6].
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HERMITE SPECTRAL VISCOSITY METHOD 1063

Proposition 2. Let 0 ≤ μ ≤ σ. There exists a positive constant C, independent
of N , such that, for all ϕ ∈ Hσ

w,

‖ϕ− πNϕ‖μ,w ≤ CN
μ−σ

2 ‖ϕ‖σ,w .(2.7)

In practice, the spectral projection πNϕ is of limited value since it is difficult to
compute accurately. There is another way of approximating a continuous function
ϕ ∈ L2

w by an element of VN . Let z0, z1, . . . , zN be the zeros of HN+1, which are all
real and distinct. Given ϕ ∈ C(R) ∩ L2

w, its Nth pseudospectral projection is the
unique function INϕ ∈ VN such that

INϕ(zj) = ϕ(zj), j = 0, 1, . . . , N.

If INϕ(x) =
∑N

k=0 ϕ̃khk(x), the kth coefficient ϕ̃k is the result of approximating
the exact Fourier–Hermite coefficient ϕ̂k by means of a Gaussian quadrature formula.
More precisely,

ϕ̃k =

N∑
j=0

wk,jϕ(zj), where wk,j =
2N−kN !hk(zj)

(N + 1)k!(hN (zj))2
.(2.8)

In [1], the following estimate for the weighted Sobolev norms of the error of the
pseudospectral projection is given.

Proposition 3. Let σ ≥ 1 and 0 ≤ μ ≤ σ. There exists a positive constant C,
independent of N , such that, for all ϕ ∈ Hσ

w,

‖ϕ− INϕ‖μ,w ≤ CN
1
6+μ−σ

2 ‖ϕ‖σ,w.(2.9)

Finally, we introduce a differential operator which will play the role of the Lapla-
cian in the usual viscosity spectral methods. Given ϕ ∈ H2

w,

Lϕ(x) = −e−x2
(
ex

2

ϕ′(x)
)′

= −(ϕ′′(x) + 2xϕ′(x)).

From (2.1) and the definition of Hermite functions it follows that the eigenfunctions
of L are the Hermite functions hk with eigenvalues λk = 2(k + 1); that is,

Lhk(x) = 2(k + 1)hk(x), k = 0, 1, 2, . . . .

In [3] it is proved that L is a positive definite self-adjoint operator with compact
inverse in L2

w that generates an analytic semigroup of contractions {e−tL}.

3. The Hermite spectral and pseudospectral viscosity methods. It is
well known that the entropy solution of (1.1) can be obtained as the limit when ε
tends to 0 of the solution of the parabolic problem obtained when one introduces in
the right-hand side of (1.1) a vanishing viscosity term of the form εuxx. Based on this
fact, Tadmor defined the spectral viscosity approximation of the entropy solution u
as a truncated Fourier series that is the solution of the approximated problem⎧⎨⎩

∂uN

∂t
+ PN

∂f(uN )

∂x
= εN

∂

∂x

(
QmN

∂uN

∂x

)
, x ∈ I, t > 0,

uN (x, 0) = PNu(x, 0), x ∈ I,
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1064 JULIÁN AGUIRRE AND JUDITH RIVAS

where PN stands for the Fourier spectral or pseudospectral projection. Since the
exponentials eikx are eigenfunctions of the Laplacian, the term on the right-hand side
can be easily implemented. However, when one takes the Hermite functions as an
orthogonal basis, the Laplacian is not an appropriate way to introduce the artificial
viscosity in the numerical scheme.

By using the properties of the operator L as well as compensated compactness
arguments similar to those to be used in the proof of convergence in section 5, one
can prove the following result about the entropy solution of (1.1).

Theorem 1. Let f ∈ C1 be a nonlinear function such that f ′(0) = 0, ϕ ∈
L2
w ∩ L∞(R) and uε the solution of⎧⎨⎩

∂uε

∂t
+

∂f(uε)

∂x
+ εLuε = 0, x ∈ R, t > 0,

uε(x, 0) = ϕ(x), x ∈ R.

Then, for any p ≥ 1 and any Ω ⊂ R × (0,∞) open and bounded, uε converges in
Lp(Ω) to the unique entropy solution of (1.1) when ε tends to 0.

By taking this into account, we define the spectral (or pseudospectral) viscosity

approximation to the unique entropy solution of (1.1) as uN (x, t) =
∑N

k=0 ũk(t)hk(x)
such that⎧⎨⎩

∂uN

∂t
+

∂

∂x
(PN−1f(uN )) + εNL(QmN

uN ) = 0, x ∈ R, t ∈ (0, T ),

uN (x, 0) = PNϕ(x), x ∈ R.

PN stands for πN in the spectral viscosity approximation and for IN in the pseu-
dospectral one. QmN

is a viscosity operator which modifies only the high modes of
the Fourier–Hermite expansion, that is,

QmN

(
N∑

k=0

ϕ̂k hk(x)

)
=

N∑
k=0

q̂k ϕ̂k hk(x),(3.1)

where ⎧⎨⎩
q̂k = 0 if k ≤ mN ,

1 − mN

k
≤ q̂k ≤ 1 if k > mN ,

(3.2)

mN < N being a positive integer that tends to ∞ with N . Finally, εN is a positive
parameter depending on N that will tend to 0 as N tends to infinity.

We will give conditions on mN and εN to ensure the convergence of uN to the
unique entropy solution of (1.1).

4. A priori estimates. In this section we will find two kinds of a priori esti-
mates, following the lines of [14]. The first kind of estimate is related to the viscosity
operator QmN

, while the second one is concerned with the approximate solution uN .
Lemma 1. Let R be a linear operator defined in VN in the following way:

R

(
N∑

k=0

ϕ̂k hk(x)

)
=

N∑
k=0

r̂k ϕ̂k hk(x),
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HERMITE SPECTRAL VISCOSITY METHOD 1065

where r̂0, . . . , r̂N are real numbers. Then, for all ϕ ∈ VN ,

‖Rϕ‖2
1,w ≤ 2

(
N∑

k=0

r̂2
k(k + 1)

)
‖ϕ‖2

0,w .

Proof. Let ϕ(x) =
∑N

k=0 ϕ̂khk(x). From (2.2), (Rϕ)′(x) = −
∑N

k=0 r̂k ϕ̂k hk+1(x),
so that, by taking norms and recalling (2.3), one has

‖Rϕ‖2
1,w =

N∑
k=0

r̂2
k ϕ̂

2
k 2k+1(k + 1)!

√
π

≤ 2

(
N∑

k=0

r̂2
k(k + 1)

)(
N∑

k=0

ϕ̂2
k 2k k!

√
π

)

= 2

(
N∑

k=0

r̂2
k (k + 1)

)
‖ϕ‖0,w

2
.

By using this result we can now bound the norm of the derivative of a function
of VN by the sum of the H1

w norms of its high frequencies modified by QmN
and the

L2
w norm of the function itself, multiplied by a constant that grows with N .

Lemma 2. Let QmN
be defined as in (3.1), (3.2). Then there exist positive con-

stants C1 and C2, independent of N , such that

‖ϕ‖2
1,w ≤ C1 ‖QmN

ϕ‖2
1,w + C2m

2
N ‖ϕ‖2

0,w ∀ϕ ∈ VN .

Proof. Let ϕ(x) =
∑N

k=0 ϕ̂khk(x), and let RmN
= I−QmN

, where I is the identity
operator. Then

‖ϕ‖2
1,w ≤ C

(
‖QmN

ϕ‖2
1,w + ‖RmN

ϕ‖2
1,w

)
.

We split ϕ in dyadic parts ϕ(x) =
∑mN

k=0 ϕ̂k hk(x) +
∑J

j=1 ϕ
j(x), where

ϕj(x) =

2jmN∑
k>2j−1mN

ϕ̂k hk(x), j = 1, . . . , J.

Here J = [log2
N
mN

] + 1 and ϕ̂k = 0 for k = N + 1, . . . , 2JmN .
From the orthogonality relation (2.3), one has

‖RmN
ϕ‖2

1,w =

∥∥∥∥∥RmN

mN∑
k=0

ϕ̂k hk

∥∥∥∥∥
2

1,w

+

J∑
j=1

∥∥RmN
ϕj

∥∥2

1,w
.(4.1)

We bound each summand by using the result obtained in Lemma 1. Since q̂k = 0
for k ≤ mN ,∥∥∥∥∥RmN

mN∑
k=0

ϕ̂k hk

∥∥∥∥∥
2

1,w

≤ 2

(
mN∑
k=0

(1 − q̂k)
2(k + 1)

)∥∥∥∥∥
mN∑
k=0

ϕ̂k hk

∥∥∥∥∥
2

0,w

≤ Cm2
N

∥∥∥∥∥
mN∑
k=0

ϕ̂k hk

∥∥∥∥∥
2

0,w

.
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1066 JULIÁN AGUIRRE AND JUDITH RIVAS

For the terms in the summatory, since q̂k ≥ 1− mN

k , we get, for any j = 1, . . . , J ,

∥∥RmN
ϕj

∥∥2

1,w
≤ C

⎛⎝ 2jmN∑
k>2j−1mN

(1 − q̂k)
2(k + 1)

⎞⎠∥∥ϕj
∥∥2

0,w

≤ Cm2
N

2jmN∑
k>2j−1mN

1

k

∥∥ϕj
∥∥2

0,w

≤ Cm2
N

1

2j−1mN
(2jmN − 2j−1mN )

∥∥ϕj
∥∥2

0,w

= Cm2
N

∥∥ϕj
∥∥2

0,w
.

Hence,

‖RmN
ϕ‖2

1,w ≤ Cm2
N

⎛⎝∥∥∥∥∥
mN∑
k=0

ϕ̂k hk

∥∥∥∥∥
2

0,w

+

J∑
j=1

∥∥ϕj
∥∥2

0,w

⎞⎠
≤ Cm2

N ‖ϕ‖2
0,w ,

and by substituting in (4.1) we get the desired result.
Now we will find some a priori estimates for the solution of the approximate

problem uN . We will use the following notation for norms in R× [0, T ], where T > 0:

‖ϕ‖2
k,w,T =

∫ T

0

‖ϕ(·, t)‖2
k,w dt ∀ϕ ∈ L2(R, Hk

w).

There are some differences between the spectral and the pseudospectral cases;
therefore we will distinguish both cases. We start with the spectral approximation.

Lemma 3. Let f ∈ C2(R) be such that f ′(0) = 0, ϕ ∈ L2
w, T > 0, mN = [O(Nβ)],

εN = O(N−θ), with 0 < 2β < θ < 1/2, QmN
given by (3.1), (3.2), and uN : [0, T ] →

VN the solution of⎧⎨⎩
∂uN

∂t
+

∂

∂x
(πN−1f(uN )) + εNL(QmN

uN ) = 0, x ∈ R, t ∈ (0, T ),

uN (x, 0) = πNϕ(x), x ∈ R.
(4.2)

Let us assume that there exists a positive constant c, independent of N , such that

‖(1 + |x|)uN‖L∞(R×(0,T )) ≤ c.(4.3)

Then there exist positive constants k and C(T ), independent of N , such that

‖uN (·, t)‖0,w ≤ ekt ‖uN (·, 0)‖0,w ∀ t ∈ (0, T ),(4.4)

‖QmN
uN‖1,w,T ≤ C(T )

√
εN

,(4.5)

‖uN‖1,w,T ≤ C(T )
√
εN

.(4.6)
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Proof. We multiply (4.2) by uN and integrate in space with respect to the weight
w(x) to yield∫ ∞

−∞

∂uN

∂t
uN w dx +

∫ ∞

−∞

∂

∂x
(πN−1f(uN ))uN w dx

(4.7)

− εN

∫ ∞

−∞
e−x2 ∂

∂x

(
ex

2 ∂

∂x
(QmN

uN )

)
uN w dx = 0.

By taking into account that d
dxπN−1 = πN

d
dx and the orthogonality of Hermite func-

tions, we get∫ ∞

−∞

∂

∂x
(πN−1f(uN ))uN w dx =

∫ ∞

−∞

∂

∂x
(f(uN ))uN w dx.

Let F be a primitive of uf ′(u) such that F (0) = 0. Then by integrating by parts
above∫ ∞

−∞

∂

∂x
(f(uN ))uN w dx =

∫ ∞

−∞

∂

∂x
(F (uN )) w dx = −

∫ ∞

−∞
2xF (uN )w dx.

From the mean value theorem, for each (x, t) there exists ηN between 0 and uN such
that

F (uN ) = F ′(ηN )uN = ηN f ′(ηN )uN .

By using again the mean value theorem, this time with f ′, for each (x, t) there exists
ξN between 0 and ηN such that

F (uN ) = ηN (f ′(ηN ) − f ′(0)) uN = ηN f ′′(ξN ) ηN uN = f ′′(ξN ) η2
N uN

and hence∣∣∣∣∫ ∞

−∞
2xF (uN )w dx

∣∣∣∣ =

∣∣∣∣∫ ∞

−∞
2x η2

N f ′′(ξN )uN w dx

∣∣∣∣
≤ ‖2 |x|uN‖L∞(R×(0,T )) sup

|ξ|≤c

|f ′′(ξ)| ‖ηN (·, t)‖2
0,w(4.8)

≤ k ‖uN (·, t)‖2
0,w .

In the third integral in (4.7) we integrate by parts to yield

−εN

∫ ∞

−∞
e−x2 ∂

∂x

(
ex

2 ∂

∂x
(QmN

uN )

)
uN w dx = εN

∫ ∞

−∞

∂

∂x
(QmN

uN )
∂uN

∂x
w dx.

Let uN (x, t) =
∑N

k=0 ũk(t)hk(x). From the definition of QmN
and the orthogonality

of Hermite functions,∫ ∞

−∞

∂

∂x
(QmN

uN )
∂uN

∂x
w dx =

N∑
k=0

q̂k (ũk(t))
2 ‖hk+1‖2

0,w

≥
N∑

k=0

q̂2
k (ũk(t))

2 ‖hk+1‖2
0,w(4.9)

=

∥∥∥∥ ∂

∂x
(QmN

uN )(·, t)
∥∥∥∥2

0,w

.
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1068 JULIÁN AGUIRRE AND JUDITH RIVAS

By substituting (4.8) and (4.9) in (4.7), we get

1

2

d

dt
‖uN (·, t)‖2

0,w + εN

∥∥∥∥ ∂

∂x
(QmN

uN )(·, t)
∥∥∥∥2

0,w

≤ k ‖uN (·, t)‖2
0,w .(4.10)

In particular, d
dt‖uN (·, t)‖2

0,w ≤ 2k‖uN (·, t)‖2
0,w; hence

‖uN (·, t)‖2
0,w ≤ e2kt ‖uN (·, 0)‖2

0,w ,

and (4.4) follows. Besides, by integrating (4.10) in time between 0 and T ,

‖uN (·, T )‖2
0,w + 2εN

∥∥∥∥ ∂

∂x
(QmN

uN )

∥∥∥∥2

0,w,T

≤ ‖uN (·, 0)‖2
0,w + 2k

∫ T

0

‖uN (·, t)‖2
0,w dt

≤ C(T ) ‖uN (·, 0)‖2
0,w .(4.11)

Since uN (x, 0) = πNϕ(x) and ϕ ∈ L2
w, we know that ‖uN (·, t)‖0,w ≤ ‖ϕ‖0,w. There-

fore, from (4.11) one deduces the estimate (4.5). Finally, by Lemma 2 one can obtain∥∥∥∥∂uN

∂x

∥∥∥∥2

0,w,T

≤ C

∥∥∥∥ ∂

∂x
(QmN

uN )

∥∥∥∥2

0,w,T

+ Cm2
N

∫ T

0

‖uN (·, t)‖2
0,w dt

≤ C(T )

εN
+ C(T )m2

N

≤ C(T )
1 + εNm2

N

εN
.

The inequality 2β < θ implies that εNm2
N = o(1) and, hence, the estimate (4.6) is

verified.
In the case of the pseudospectral approximation, more restrictive conditions must

be imposed due to the fact that the approximation properties of IN are not as good
as those of πN .

Lemma 4. Let f ∈ C2(R) be such that f ′(0) = 0, ϕ ∈ H1
w, T > 0, mN = [O(Nβ ],

εN = O(N−θ), with 0 < 2β < θ < 1/3, QmN
given by (3.1), (3.2), and uN : [0, T ] →

VN the solution of⎧⎨⎩
∂uN

∂t
+

∂

∂x
(IN−1f(uN )) + εNL(QmN

uN ) = 0, x ∈ R, t ∈ (0, T ),

uN (x, 0) = INϕ(x), x ∈ R.
(4.12)

Let us assume that there exists a positive constant c, independent of N , such that

‖(1 + |x|)uN‖L∞(R×(0,T )) ≤ c.(4.13)

Then there exist positive constants k and C(T ), independent of N , such that

‖uN (·, t)‖0,w ≤ ekt ‖uN (·, 0)‖0,w ∀ t ∈ (0, T ),(4.14)

‖QmN
uN‖1,w,T ≤ C(T )

√
εN

,(4.15)

‖uN‖1,w,T ≤ C(T )
√
εN

.(4.16)
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Proof. Since the proof of these results is very similar to the one of Lemma 3, we
will detail only the steps that present some difference. By multiplying (4.12) by uN

and integrating in space with respect to w, we get∫ ∞

−∞

∂uN

∂t
uN w dx +

∫ ∞

−∞

∂

∂x
(IN−1f(uN ))uN w dx

(4.17)

− εN

∫ ∞

−∞
e−x2 ∂

∂x

(
ex

2 ∂

∂x
(QmN

uN )

)
uN w dx = 0.

While the first and third integrals are rewritten and bounded as in Lemma 3, the
second integral needs a different analysis, since d

dxIN−1 �= IN
d
dx . We decompose this

integral as follows:∫ ∞

−∞

∂

∂x
(IN−1f(uN ))uN w dx =

∫ ∞

−∞

∂

∂x
(f(uN ))uN w dx

−
∫ ∞

−∞

∂

∂x
((I − IN−1)f(uN ))uN w dx.

The first summand is bounded as for uN :∣∣∣∣∫ ∞

−∞

∂

∂x
(f(uN ))uN w dx

∣∣∣∣ ≤ C ‖uN (·, t)‖2
0,w .(4.18)

In the second term, we integrate by parts:

−
∫ ∞

−∞

∂

∂x
((I − IN−1)f(uN ))uN w dx =

∫ ∞

−∞
(I−IN−1)f(uN )

(
∂uN

∂x
+ 2xuN

)
w dx.

By the Cauchy–Schwartz inequality, followed by (2.9) and (2.6), one can deduce that∣∣∣∣∫ ∞

−∞

∂

∂x
((I − IN−1)f(uN ))uN w dx

∣∣∣∣
≤ ‖(I − IN−1)f(uN (·, t))‖0,w

∥∥∥∥2xuN (·, t) +
∂uN

∂x
(·, t)

∥∥∥∥
0,w

≤ C N−1/3
∥∥∥ ∂

∂x
(f(uN (·, t)))

∥∥∥
0,w

∥∥∥∂uN

∂x
(·, t)

∥∥∥
0,w

≤ C N−1/3
∥∥∥∂uN

∂x
(·, t)

∥∥∥2

0,w
,

where one has to take into account that |f ′(uN )| ≤ C due to the uniform boundedness
assumed in (4.13).

Finally, we apply the estimate in Lemma 2 and obtain∣∣∣∣∫ ∞

−∞

∂

∂x
((I − IN−1)f(uN ))uN w dx

∣∣∣∣
(4.19)

≤ C N−1/3

(∥∥∥ ∂

∂x
(QmN

uN )(·, t)
∥∥∥2

0,w
+ m2

N ‖uN (·, t)‖2
0,w

)
.

By substituting (4.18) and (4.19) in (4.17) we obtain

1

2

d

dt
‖uN (·, t)‖2

0,w +
(
εN − C N−1/3

)∥∥∥ ∂

∂x
(QmN

uN )(·, t)
∥∥∥2

0,w

≤ C
(
1 + N−1/3m2

N

)
‖uN (·, t)‖0,w .
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1070 JULIÁN AGUIRRE AND JUDITH RIVAS

Since εN = O(N−θ) with θ < 1/3 and mN = [O(Nβ)] with 2β < θ, εN − CN−1/3 =
O(εN ) and N−1/3m2

N = o(1), so that

1

2

d

dt
‖uN (·, t)‖2

0,w + C εN

∥∥∥ ∂

∂x
(QmN

uN )(·, t)
∥∥∥2

0,w
≤ C ‖uN (·, t)‖2

0,w .

By arguing as in Lemma 3, we get (4.14) as well as

εN

∥∥∥ ∂

∂x
(QmN

uN )
∥∥∥

0,w,T
≤ C(T ) ‖uN (·, 0)‖2

0,w .

By recalling that ϕ ∈ H1
w, we use (2.9) to deduce that

‖uN (·, 0)‖2
0,w = ‖INϕ‖2

0,w ≤ ‖ϕ‖2
0,w + C N−1/3 ‖ϕ‖2

1,w ≤ C ‖ϕ‖2
1,w ,

and inequalities (4.15) and (4.16) are satisfied.
The uniform boundedness hypothesis on {uN} is common in spectral viscosity

approximations as can be seen in [21], [15], [14], although in some cases it is deduced
from the approximate equation itself, as in [2]. In (4.3) and (4.13) an L∞ bound for
xuN is also imposed. The factor x is related to the weight 2x = w′w−1. Another
consequence of the presence of the weight is the more involved arguments needed to
deduce the a priori estimates of Lemmas 3 and 4, compared with the case of Fourier or
Legendre approximations, where the basis functions are orthogonal in the unweighted
L2 space.

5. Convergence to the unique entropy solution. In the proof of conver-
gence of uN to the unique entropy solution of (1.1), we will make use of compensated
compactness arguments [4], [10], [19], in which the estimates just proved in the previ-
ous section will be determinant. Since both the spectral and the pseudospectral cases
are analogous, we will detail only the proof of convergence of the first one and state
the result for the pseudospectral case under the more restrictive conditions mentioned
earlier.

The proof that, for any entropy pair (U,F ) associated to (1.1), {∂uN

∂t + ∂f(uN )
∂x }

and {∂U(uN )
∂t + ∂F (uN )

∂x } satisfy the hypothesis of Murat’s lemma will be split into
several lemmas.

Lemma 5. Under the hypothesis of Lemma 3 the sequence
{
εNL(QmN

uN )
}
N∈N

tends to 0 in H−1
loc (R × (0, T )).

Proof. From the definition of L,

L(QmN
uN ) = 2QmN

uN − ∂

∂x
(2xQmN

uN ) − ∂

∂x

(
∂

∂x
(QmN

uN )

)
.

Let K ⊂ R × (0, T ) be compact. Since 0 ≤ q̂k ≤ 1 for k = 0, . . . , N , and by taking
into account the estimate (4.4),

‖2QmN
uN‖L2(K) ≤ 2‖QmN

uN‖0,w,T ≤ 2‖uN‖0,w,T ≤ C(T )‖ϕ‖0,w.

By using now property (2.6) and estimate (4.5), we get

‖2xQmN
uN‖L2(K) ≤ 2‖xQmN

uN‖0,w,T ≤ 2‖QmN
uN‖1,w,T ≤ C(T )

√
εN

.
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Finally, by applying again estimate (4.5) we can deduce that∥∥∥ ∂

∂x
(QmN

uN )
∥∥∥
L2(K)

≤ ‖QmN
uN‖1,w,T ≤ C(T )

√
εN

.

Hence, εNL(QmN
uN ) is the sum of a function tending to 0 in L2(K) and the deriva-

tives of two functions also tending to 0 in L2(K), K being any compact subset, and,
therefore, εNL(QmN

uN ) tends to 0 in H−1
loc (R × (0, T )).

Lemma 6. Under the same hypothesis of Lemma 3, { ∂
∂x ((I − πN−1)f(uN ))}N∈N

tends to 0 in H−1
loc (R × (0, T )).

Proof. Let K ⊂ R × (0, T ) be compact. From (2.7) we have

‖(I − πN−1)f(uN )‖L2(K) ≤ ‖(I − πN−1)f(uN )‖0,w,T ≤ CN−1/2‖f(uN )‖1,w,T .

Without loss of generality, we can suppose that f(0) = 0. The uniform boundedness of
uN together with the continuity of f ′ allows us to deduce that if C = max|ξ|≤c |f ′(ξ)|,
then |f(uN )| ≤ C|uN |, so that, by (4.6), we obtain

‖(I − πN−1)f(uN )‖L2(K) ≤ CN−1/2‖uN‖1,w,T ≤ C(T )√
NεN

,

and ∂
∂x ((I − πN−1)f(uN )) is the derivative of a function that tends to 0 in L2

loc(R ×
(0, T )), since εN = O(N−θ) with θ < 1/2. Therefore, the result follows.

Lemma 7. Let U ∈ C2(R) be an entropy function of (1.1), and assume that the
hypotheses of Lemma 3 are satisfied. Then εNU ′(uN )L(QmN

uN ) can be written as
the sum of two terms, one of them tending to 0 in H−1

loc (R× (0, T )) and the other one
bounded in L1(R × (0, T )).

Proof. From the definition of L, we can write

εNU ′(uN )L(QmN
uN ) = −εNU ′(uN )

(
∂2

∂x2
(QmN

uN ) + 2x
∂

∂x
(QmN

uN )

)
= I + II,

where

I = εN

(
2U ′(uN )QmN

uN − ∂

∂x
(2xU ′(uN )QmN

uN ) − ∂

∂x

(
U ′(uN )

∂

∂x
(QmN

uN )

))
,

II = εNU ′′(uN )
∂uN

∂x

(
2xQmN

uN +
∂

∂x
(QmN

uN )

)
.

U ′ is continuous and uN uniformly bounded in L∞ so that there exists a constant
C > 0, independent of N , such that |U ′(uN )| ≤ C. By arguing as in Lemma 5,
2U ′(uN )QmN

uN , 2xU ′(uN )QmN
uN , and U ′(uN ) ∂

∂x (QmN
uN ) tend to 0 in L2

loc(R ×
(0, T )), and hence I tends to 0 in H−1

loc (R × (0, T )).
On the other hand, U ′′ is also continuous; therefore, by the Cauchy–Schwartz

inequality, followed by property (2.6) and estimates (4.5) and (4.6), we get

‖II‖L1(R×(0,T )) = εN

∥∥∥U ′′(uN )
∂uN

∂x

(
2xQmN

uN +
∂

∂x
(QmN

uN )

)∥∥∥
L1(R×(0,T ))

≤ CεN

∥∥∥∂uN

∂x

∥∥∥
L2(R×(0,T ))

∥∥∥2xQmN
uN +

∂

∂x
(QmN

uN )
∥∥∥
L2(R×(0,T ))

≤ CεN ‖uN‖1,w,T ‖QmN
uN‖1,w,T

≤ C(T );

that is, II is bounded in L1(R × (0, T )).
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Lemma 8. Let U ∈ C2(R) be an entropy function of (1.1), and assume that
the hypotheses of Lemma 3 are satisfied. Then U ′(uN ) ∂

∂x ((I − πN−1)f(uN )) can be

written as the sum of two terms, one of them tending to 0 in H−1
loc (R× (0, T )) and the

other one bounded in L1(R × (0, T )).
Proof. We write U ′(uN ) ∂

∂x ((I−πN−1)f(uN )) as a difference in the following way:

U ′(uN )
∂

∂x
((I − πN−1)f(uN )) =

∂

∂x
(U ′(uN )(I − πN−1)f(uN ))

−U ′′(uN )
∂uN

∂x
((I − πN−1)f(uN )) .

The first term is the derivative of a function that tends to 0 in L2(R × (0, T )) since,
by arguing as in Lemma 6,

‖U ′(uN )(I − πN−1)f(uN )‖L2(R×(0,T )) ≤ C‖(I − πN−1)f(uN )‖0,w,T

≤ C(T )√
NεN

.

Therefore, ∂
∂x (U ′(uN )(I − πN−1)f(uN )) tends to 0 in H−1

loc (R × (0, T )).
To bound the L1 norm of the second term we use the Cauchy–Schwartz inequality,

followed by (2.7) and the estimates obtained in Lemma 3, yielding∥∥∥U ′′(uN )
∂uN

∂x
((I − πN−1)f(uN ))

∥∥∥
L1(R×(0,T ))

≤ C
∥∥∥∂uN

∂x

∥∥∥
L2(R×(0,T ))

∥∥(I − πN−1)f(uN )
∥∥
L2(R×(0,T ))

≤ C‖uN‖1,w,TN
−1/2‖uN‖1,w,T

≤ C(T )

N1/2εN
.

By recalling that εN = O(N−θ) with θ < 1/2, the result follows.
We are now ready to prove the convergence of uN , by making use of Murat’s and

Tartar’s lemmas.
Theorem 2. Let f ∈ C2(R) be a nonlinear function such that f ′(0) = 0, ϕ ∈

L2
w ∩ L∞(R), mN = [O(Nβ)], εN = O(N−θ), with 0 < 2β < θ < 1/2, and assume

that, for a given T > 0, the solution uN of (4.2) verifies the uniform bound (4.3). Then
{uN} converges in Lp(Ω) to the unique entropy solution of (1.1) for any Ω ⊂ R×[0, T ]
open and bounded and any p ≥ 1.

Proof. The uniform boundedness of {uN} in L∞(R × (0, T )) ensures that there
exists a subsequence that we will still denote by {uN}, which converges in the weak-∗

topology of L∞. Let u be its limit. We will prove that u is the unique entropy solution
of (1.1), and we will also show that the whole sequence tends to u in Lp(Ω) for every
p ≥ 1 and every Ω ⊂ R × (0, T ) open and bounded.

Let (U,F ) be an entropy pair associated to (1.1). We first prove that ∂uN

∂t + ∂f(uN )
∂x

and ∂U(uN )
∂t + ∂F (uN )

∂x are in a compact set of H−1
loc (R × (0, T )). From (4.2), we can

write

∂uN

∂t
+

∂f(uN )

∂x
=

∂uN

∂t
+

∂

∂x
(πN−1f(uN )) +

∂

∂x
((I − πN−1)f(uN ))

= −εNL(QmN
uN ) +

∂

∂x
((I − πN−1)f(uN )) .(5.1)

We have shown in Lemmas 5 and 6 that both summands in the right-hand side tend

to 0 in H−1
loc (R× (0, T )), and therefore ∂uN

∂t + ∂f(uN )
∂x is in a compact set of this space.
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On the other hand, since F ′(u) = f ′(u)U ′(u),

∂U(uN )

∂t
+

∂F (uN )

∂x
= U ′(uN )

∂uN

∂t
+ F ′(uN )

∂uN

∂x

= −εNU ′(uN )L(QmN
uN ) + U ′(uN )

∂

∂x
((I − πN−1)f(uN )) .

From Lemmas 7 and 8 it follows that ∂U(uN )
∂t + ∂F (uN )

∂x is the sum of two terms, one of

them being in a compact set of H−1
loc (R × (0, T )) and the other one being bounded in

the set of measures M(R×(0, T )). Besides, ∂U(uN )
∂t + ∂F (uN )

∂x is in W−1,p
loc (R×(0, T )) for

any p > 2, since U and F are continuous and uN uniformly bounded in L∞(R×(0, T )).

Therefore, by Murat’s lemma, ∂U(uN )
∂t + ∂F (uN )

∂x is in a compact set of H−1
loc (R×(0, T )).

We apply now Tartar’s div-culr lemma [22] to conclude that u is in fact a weak
solution of (1.1). Let us now turn to the analysis of the entropy condition.

∂U(uN )

∂t
+

∂F (uN )

∂x
= εNe−x2 ∂

∂x

(
ex

2

U ′(uN )
∂

∂x
(QmN

uN )

)
−εNU ′′(uN )

∂uN

∂x

∂

∂x
(QmN

uN )

+
∂

∂x
(U ′(uN )(I − πN−1)f(uN ))

−U ′′(uN )
∂uN

∂x
((I − πN−1)f(uN )) .

We multiply this equality by a nonnegative function test φ ∈ C1
0 (R × (0, T )) and

integrate by parts to obtain∫ ∞

0

∫ ∞

−∞

(
U(uN )

∂φ

∂t
+ F (uN )

∂φ

∂x

)
dx dt

= εN

∫ ∞

0

∫ ∞

−∞
U ′(uN )

∂

∂x
(QmN

uN )

(
−2xφ +

∂φ

∂x

)
dx dt

+εN

∫ ∞

0

∫ ∞

−∞
U ′′(uN )

∂uN

∂x

∂

∂x
(QmN

uN )φdx dt

+

∫ ∞

0

∫ ∞

−∞
U ′(uN ) ((I − πN−1)f(uN ))

∂φ

∂x
dx dt

+

∫ ∞

0

∫ ∞

−∞
U ′′(uN )

∂uN

∂x
((I − πN−1)f(uN ))φdx dt.

Estimates (4.5) and (4.6) and property (2.7) imply that the first, third, and fourth
integrals on the right-hand side tend to 0 when N tends to infinity. Besides, if RmN

=
I −QmN

, then

∂uN

∂x

∂

∂x
(QmN

uN ) =

(
∂uN

∂x

)2

− ∂uN

∂x

∂

∂x
(RmN

uN ),

and, by taking into account the estimate obtained in the proof of Lemma 2 for
‖RmN

ϕ‖1,w and the bound (4.6), we have∥∥∥∂uN

∂x

∂

∂x
(RmN

uN )
∥∥∥
L1(R×(0,T ))

≤
∥∥∥∂uN

∂x

∥∥∥
0,w,T

∥∥∥ ∂

∂x
(RmN

uN )
∥∥∥

0,w,T

≤ C(T )mN ε
−1/2
N ‖ϕ‖0,w .
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By taking this into account, we split the second integral in the right-hand side above
into two terms, and we deduce that

lim
N→∞

εN

∫ ∞

0

∫ ∞

−∞
U ′′(uN )

∂uN

∂x

∂

∂x
(RmN

uN )φdx dt = 0,

while

εN

∫ ∞

0

∫ ∞

−∞
U ′′(uN )

(
∂uN

∂x

)2

φ ≥ 0,

thanks to the convexity of U . We have proved, therefore, that u verifies the entropy
condition. The uniqueness of the entropy solution allows us to assure that not only
a subsequence but the whole sequence {uN} converges to u and, by recalling results
about Young measures, the convergence in Lp(Ω) for any p ≥ 1 and any Ω ⊂ R×(0, T )
open and bounded is also fulfilled.

The same convergence result is obtained for the pseudspectral viscosity approxi-
mation, under the more restrictive conditions of Lemma 4.

Theorem 3. Let f ∈ C2(R) be a nonlinear function such that f ′(0) = 0, ϕ ∈ H1
w,

mN = [O(Nβ)], εN = O(N−θ), with 0 < 2β < θ < 1/3, and assume that, given
T > 0, the solution uN of (4.12) verifies (4.13). Then {uN} converges in Lp(Ω) to
the unique entropy solution of (1.1) for any Ω ⊂ R× [0, T ] open and bounded and any
p ≥ 1.

6. Numerical experiments. In this section we present the numerical results
obtained when applying our spectral viscosity method to Burgers’ equation with initial
condition u(x, 0) = h0(x), that is, to the Cauchy problem⎧⎨⎩

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0, x ∈ R, t > 0,

u(x, 0) = e−x2

, x ∈ R.

(6.1)

The solution to this problem presents a shock at time T ∗ = (e/2)1/2 ∼ 1.1658.
All of the numerical results presented in this section have been recorded at time
t = 1.5 > T ∗.

Although we have proved the convergence of the spectral and pseudospectral
viscosity methods, the implementation of the spectral one is expensive since the
Fourier–Hermite coefficients defined as an integral must be approximated sufficiently
accurately. Because of this, we will consider only the pseudospectral case. Hence our
approximation uN (x, t) =

∑N
k=0 ũk(t)hk(x) will be the solution of⎧⎨⎩

∂uN

∂t
+

1

2

∂

∂x

(
IN−1u

2
N

)
+ εNL (QmN

uN ) = 0,

uN (x, 0) = INϕ(x) = e−x2

.
(6.2)

As stated in (2.8), the coefficients of the pseudospectral projection are obtained by a
Gaussian quadrature formula, whose weights have been computed for different values
of N by using Mathematica� and stored, so that there is no need to compute them
each time the method is applied. To obtain the values of u2

N at the nodes zj , we
have used Clenshaw’s formula [17] that gives an efficient and stable algorithm to

compute the values of sums of the form
∑N

k=0 ϕ̂khk(x). Besides, from (2.2), one has

(
∑N−1

k=0 ϕ̂khk(x))′ = −
∑N

k=1 ϕ̂k−1hk(x). Therfore, the coefficients of ∂
∂x (IN−1u

2
N ) are

a nonlinear combination of those of uN .
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Fig. 6.1. Graphs of the exact solution of Burgers’ equation (solid line) and of the pseudospectral
approximation without viscosity (dashed line), with N = 129 and N = 257.
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Fig. 6.2. Graphs of the exact solution of Burgers’ equation (solid line) and the viscosity
pseudospectral approximation (dashed line) at time t = 1.5, for N = 257, εN = 0.5N−0.33, and
mN = [5N0.16], by taking q̂k = q̂1k, q̂k = q̂2k, and q̂k = q̂3k, respectively, for k > mN .

On the other hand, from the definition of QmN
and the fact that hk is an eigen-

function of L, the coefficients of the viscosity term are obtained by multiplying those
of uN by 2(k + 1)q̂k.

Hence, the coefficients ũk(t), k = 0, . . . , N , are the solution of a nonlinear system
of ordinary differential equations that has been solved by using a fourth order Runge–
Kutta method with an adaptive time step.

In Figure 6.1 we show the result of approximating u by a Hermite pseudospectral
method without viscosity (εN = 0) for N = 129 and N = 257. The appearance of
instabilities prevents the convergence of the approximation.

The viscosity introduced by the numerical scheme (6.2) depends on the parameters
εN and mN and the operator QmN

. Convergence is ensured if

εN = O(N−θ), 0 < θ < 1/3,(6.3)

mN = [O(Nβ)], 0 < β < θ/2,(6.4)

1 − mN

k
≤ q̂k ≤ 1, mN < k ≤ N.(6.5)

The bigger the coefficients q̂k and εN are, the stronger the viscosity introduced is,
while high values of mN mean less viscosity since fewer coefficients are present in the
viscosity term. Too much viscosity yields a worse resolution of the shock, but too little
viscosity allows more oscillations that can lead to lack of convergence. By taking this
into account, we have chosen εN = 0.5N−0.33 and mN = [5N0.16], so that conditions
(6.3) and (6.4) are satisfied but viscosity is not too strong.

In Figure 6.2 we show the results obtained, for N = 257 and t = 1.5, with different
operators QmN

that verify in any case that q̂N = 1.
The first figure corresponds to taking

q̂1
k =

N

N −mN

(
1 − mN

k

)
for k > mN

which satisfies (6.5). The approximate solution presents few oscillations, but the shock
is not very well approximated.
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Fig. 6.3. Graphs of the exact solution to Burgers’ equation (solid line) and of the pseudospectral
viscosity approximation (dashed line), by taking q̂k = q̂3k, εN = 0.5N−0.33, and mN = [5N0.16], for
N = 33, N = 65, N = 129, and N = 257.

In the second figure we present the solution obtained when

q̂2
k =

k −mN

N −mN
for k > mN ,

which corresponds to coefficients laying on the straight line that joins the points
(mN , 0) and (N, 1), in a similar fashion as in one of the examples presented in [15].
The resulting approximation is more accurate near the shock, and there are very few
oscillations.

Finally, we have taken

q̂3
k = exp

(
−
(

k −N

k −mN

)2
)

for k > mN ,

since in [15] the author suggests that coefficients that can be written as q̂k = q(k/N),
with q ∈ C∞, may lead to better results. This approximation is more accurate near
the discontinuity, at the expense of more oscillations all over the domain.

In the three cases, the results can be slightly improved by properly choosing εN
and mN , but the third viscosity operator considered gives the best resolution of the
shock.

The approximations obtained with this last operator for different values of N
are shown in Figure 6.3. The improvement in the resolution of the shock when N
increases is clear. However, the overshoot near the discontinuity does not decrease,
and oscillations are present all along the domain. These are the main features of the
so-called Gibbs phenomenon that appears when a nonregular function is approximated
by its spectral or pseudospectral projection. Associated to this Gibbs phenomenon
there is also a poor pointwise convergence rate even at points far away from the
discontinuity.

In [18], a filter has been developed to enhance the convergence rate of the spectral
projection of nonsmooth functions of L2

w. Given ϕ ∈ L2
w, the new approximation is

defined as

Fθ,p[πNϕ](x) = πpF
N,θ,x(x),

where FN,θ,x is a localization of the Nth spectral projection of ϕ:

FN,θ,x(y) = πNϕ(y)ρ

(
x− y

θ

)
.
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Fig. 6.4. Graphs of the solution of Burgers’ equation (solid line) and its pseudospectral viscosity
approximation before filtering (dashed line) and after filtering (dotted line).
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Fig. 6.5. Logarithms of the errors multiplied by w1/2 for the pseudospectral viscosity approxi-
mation of the solution of Burgers’ equation before filtering and after filtering.

ρ is an even smooth function with compact support, θ is a positive number, and p is
an integer that will typically be taken as p = [O(Nα)].

If ϕ is piecewise C∞ and has a jump discontinuity at x0 ∈ R, it is proven in [18]
that for ρ ∈ Cm, α = 1

2 − 1
3m+1 , and |x− x0| > θ one has

ex
2/2

∣∣ϕ(x) −Fθ,p[πNϕ](x)
∣∣ = O(Nγ), with γ = −m

4
+

m

3m + 1
.

Spectral convergence is thus recovered, away from the discontinuity, by choosing ρ ∈
C∞ and p = [O(

√
N)].

When this filtering procedure is applied to the pseudospectral viscosity approx-
imation, smaller artificial viscosity can be allowed. Although more oscillations will
appear, the shock will be better resolved, and it is the task of the filter to diminish the
oscillatory behavior and improve the convergence rate away from the discontinuity.

From the definition of q̃3
k, increasing mN makes almost no difference in the amount

of viscosity introduced. Therefore we have modified only the parameter εN .
In Figure 6.4 we present the pseudospectral approximation uN , with q̃k = q̃3

k,
mN = [5N0.16], and εN = 0.05N0.33, as well as the filtered approximation Fθ,p[uN ]

with parameters p = [5
√
N ], ρ(x) = exp(− 5x2

1−x2 )χ[−1,1](x), and θ = 0.9, for N = 257.
Figure 6.5 corresponds to the graphs of the logarithms of

ex
2/2|u(x, t) − u257(x, t)| and ex

2/2|u(x, t) −Fθ,p[u257](x, t)|.
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The postprocessed solution gives a clear improvement in the convergence rate at points
not too close to the discontinuity. However, the resolution of the shock is quite poor,
and a better postprocessing technique should be developed in order to retain the good
properties of the viscosity approximation near discontinuities.
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